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Abstract

■ From a brain’s-eye-view, when a stimulus occurs and what
it is are interrelated aspects of interpreting the perceptual
world. Yet in practice, the putative perceptual inferences
about sensory content and timing are often dichotomized
and not investigated as an integrated process. We here
argue that neural temporal dynamics can influence what is
perceived, and in turn, stimulus content can influence the
time at which perception is achieved. This computational
principle results from the highly interdependent relation-
ship of what and when in the environment. Both brain pro-
cesses and perceptual events display strong temporal

variability that is not always modeled; we argue that
understanding—and, minimally, modeling—this temporal
variability is key for theories of how the brain generates uni-
fied and consistent neural representations and that we
ignore temporal variability in our analysis practice at the
peril of both data interpretation and theory-building. Here,
we review what and when interactions in the brain, demon-
strate via simulations how temporal variability can result in
misguided interpretations and conclusions, and outline how
to integrate and synthesize what and when in theories and
models of brain computation. ■

INTRODUCTION

“What” and “when” seem like simple concepts, but when
we think about them pertaining to events, and the occur-
rence of those events in time and space, things quickly
become complicated. Modern physics tells us that the
relationship between time and space is much more inti-
mate than previously thought, namely, that time appears
to be a function of position in space in relation to mass
(Rovelli, 2019). This example shows that intuitively inde-
pendent concepts (time and space) can actually share a
close interdependent relationship. Here, we illustrate
that a similar interdependent relationship between what
and when exists in the neural operations pertaining to
the representations and computations of events in the
perceptual world. Naturally, every stimulus input that
enters the brain is processed with its own unique tempo-
ral dynamics (Köhler, 1967), and concomitantly, different
stimulus features can be processed at different timescales
(Moutoussis & Zeki, 1997b). Perceptual operations are
highly influenced by top–down processes that are con-
text dependent and have their own timescale (Frith &
Dolan, 1997). What is more, temporal features can also
determine the content of a stimulus (e.g., when deter-
mines what; Ten Oever & Sack, 2015; Rosen, 1992).
One example is voice-onset-time (VOT), in which the
identification of a syllable fully depends on the time of
the onset of vocal vibrations (Lisker & Abramson,

1967). This means that besides the interdependence of
what and when in neural computation, there is also an
interdependence ofwhat andwhen in the stimulus input
that arrives in the brain. Nonetheless, to interpret the
changing environment, a core function of our perceptual
system must be to extract what information is happening
when. Understanding how the brain does this has driven
the fields of perceptual and systems neuroscience since
their inception; it also has profound implications for cog-
nition (Dennett, 1993; Köhler, 1967).

A leitmotif of the problem in miniature can be seen in
the dichotomy between two methodological backbones
in neuroscience: EEG and fMRI. Most classical fMRI studies
investigate where specific content is processed in the
brain, whereas most classical EEG studies have focused
on when information is processed. Over the last 50 years,
more complex paradigms and data analysis techniques,
combined with theoretical advances, have pushed the
field forward, but the separate treatment ofwhat andwhen
information seems to persist. For example, an important
theoretical principle that has been around since the time
of Heraclitus, Bayes, and Helmhotz has more recently
evolved the field of perceptual neuroscience: It poses that
perception not only depends on passive bottom–up inter-
pretation of perceptual input but also on the current state
of the brain in terms of “belief” about what information is
going to happen (De Lange, Heilbron, & Kok, 2018;
Noppeney & Lee, 2018; Bastos et al., 2012; Trommershauser,
Kording, & Landy, 2011; Ernst & Bülthoff, 2004; Rao
& Ballard, 1999; Frith & Dolan, 1997; Helmholtz, 1878)
at what time (Nobre & van Ede, 2018; Schroeder &
Lakatos, 2009). Although what and when information
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are strongly represented in these top–down accounts of
perception, most theoretical and empirical accounts still
make a stark, implicit division between what and when,
an orthogonalization: The brain either predicts what is
going to happen or it predicts when something is going
to happen, but few integrative accounts are provided
(Ballard, 2015), never mind synthetic ones, where what
and when interrelate both in neural representation and
processing—where the intertwining of what and when
becomes part and parcel of neural representation.

Top–down effects have a direct consequence for the
perceptual inference process; as such, it has been
robustly shown that knowledge about the content and
timing of upcoming stimuli can bias what is perceived
(Ernst & Bülthoff, 2004), as well as the time at which
something is perceived (Eagleman, 2008). The McGurk
illusion is an example of a content bias (McGurk &
MacDonald, 1976). In this illusion, the presentation of
mouth movements corresponding to a /ga/ can bias the
percept of an auditory /pa/ toward a merged audiovisual
percept resembling a /da/. An example of a top–down tem-
poral bias was shown in Stetson, Cui, Montague, and
Eagleman (2006). Here, motor feedback was systemati-
cally delayed causing events that occur simultaneous
with a motor response to be perceived as occurring
before the response. The circumstances under which
content or time perception is altered are still not fully
understood. However, it is unlikely that top–down mod-
ulations influence the what and when perceptual infer-
ences process independently, as predictive top–down
processes in the brain are known to bias neural process-
ing of specific neural representations as well as decreas-
ing neural latencies (Trommershauser et al., 2011; Frith
& Dolan, 1997). It is still unclear whether, and how, pre-
dictive processing speeds up or biases neural processing.
Instead, neuronal responses that result in neural bias or
decreased latencies are often interpreted as evidence for
top–down predictive models of perception, rather than
being explicitly included in the models either as princi-
ples, mechanisms, or representational states.

We argue that it is vital to our theories and models to
stop separating what and when, and to provide an inte-
grated, synthetic account ofwhat andwhen in perception,
accounting both for interdependencies in neural compu-
tation and for interdependencies in environmental input.
What andwhen are not independent in the brain, and nei-
ther are the statistical regularities pertaining to what and
when in the environment. What is more, assuming their
independence in our analyses strategies can result in mis-
interpretation of neural data and, thereby, inaccurately
serve as evidence in favor of a given theory or mechanism
in the brain. As such, modeling the indivisible nature of
what and when would strongly improve our theories of
perception and cognition. Here, we review how what
and when interact, we highlight how one can easily inap-
propriately interpret data when what/when interactions
are not explicitly taken into account, and what steps

can be taken to move forward with the indivisible nature
of what and when.

TEMPORAL VARIABILITY IN THE BRAIN IS
OFTEN OVERLOOKED

It is indisputable that the brain takes time to process infor-
mation and that different brain areas have different
latencies at which input can arrive (Keitel & Gross, 2016;
Purushothaman, Patel, Bedell, & Ogmen, 1998). This is a
consequence not only of the synaptic delays between
consecutive processing areas (Bi & Poo, 1999) but also
of the fact that every processing stage likely requires time
to finish its own computation (viz., which might include
integration, lateral inhibition). As sequential processing
stages relate to gradually increasing cognitive complexity,
the field has classically interpreted earlier ERP compo-
nents as reflecting early sensory processing stages,
whereas later components are interpreted as being mod-
ulated by higher-order cognitive factors, such as attention,
decision-making, and “cognitive processing” (Luck, 2014;
Luck & Hillyard, 1990). The temporal dynamics of these
components also follow a systematic pattern: The later
the processing stage, the lower the frequency of the aver-
aged ERP components. The earliest components such as
brain stem responses can be up to 50 Hz (Starr & Achor,
1975; Jewett, Romano, & Williston, 1970), whereas later
attention-modulated components can go down to 1 Hz
(Spencer, Dien, & Donchin, 2001), or even lower, in the
case of the contingent-negative variation component,
whose temporal profile depends on the time interval
between a warning and a go signal (Walter, Cooper,
Aldridge, McCallum, & Winter, 1964).
This pattern of interpretation seems to suggest that later

stages of brain computation take more time, or have a
longer duration, during the processing of a stimulus.
However, this is not the whole story. An ERP frequency
reduction does not necessarily have to be a consequence
of needing a longer duration to perform a cognitive pro-
cess. Such a delay in response could also be caused by the
summation of temporal variability that increases as
sequential processing steps increase (Figure 1A). If the
latter, the brain processes a stimulus at different latencies
depending on the trial (viz., the brain time does not run
in parallel with stimulus time). Knowing which of the two
situations are at play is crucial to understand the under-
lying temporal brain dynamics. Averaging cannot tell us
the difference between the two states of affairs. One
option to disentangle these situations is to look at ERP
components that are identifiable on a single trial, such
as the P300, which is apparent based on its large ampli-
tude. Looking at the frequency response of the single tri-
als within a single participant, frequencies between 2.7
and 4.1 Hz (at 1 SD from the mean) at an average of
3.5Hz can be observed for the P300 component. This aver-
age drops down to 2.9 Hz when investigating the average
of the trials (Figure 1B and C). The difference in frequency
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content is consistent across participants and shows that
the exact time at which the P300 component varies. Thus,
this example illustrates how temporal variability can cause
a reduction in the peak frequency of the signal, which,
without the acknowledgment of the variability, might lead
to an unsound conclusion, for example, stating that neural
processing is occurring at this lower frequency. Onemight
even say that averaging in this circumstance reduces the
effective temporal resolution of EEG. Thus, it seems that
classical ERP methods cannot tell us whether an observed
frequency is the product of a neural process with a longer
duration or of temporal variability in the execution of a
process (where that variability itself could arise from
multiple possible sources). Nor can they tell us whether
the brain computes at a slower rate in lockstep with a
long duration or a low-frequency stimulus, or if what
we are observing is simply a consequence of brain com-
putation not having a linear relationship with stimulus
time (see Luck, 2014).
How can we quantify how much temporal variability is

present in the neural signal? One classical way to avoid this
problem is simply not to average, but instead extract the
frequency content of the individual trials and perform the
analyses on the spectral content of the individual trials
(Tallon-Baudry & Bertrand, 1999; Makeig, 1993). Although
this ensures that no new frequency content is introduced
through averaging, temporal variability can still contami-
nate the signal in different ways. First, in continuous data

where we cannot clearly separate trials, repeated high-
frequency evoked responses may still appear in lower fre-
quencies (see the simulations in Variability in Neural
Dynamics and Analytical Interpretation section). Second,
temporal variability on single-trial spectral estimates can
still lead to temporal smearing of the frequency content
across the estimated window. For example, Jones (2016)
has shown that an activity in the beta frequency band last-
ing around 1 sec in the average power spectra does not
necessarily reflect beta oscillations that are active for
1 sec. Instead, strong discrete beta events occur at differ-
ent moments in different trials, which leads to a beta-band
effect. Averaging across the power spectra of single trials
smears this temporal variance across time, suggesting that
an event previously described as a sustained rhythmic
event can better be described as discrete events that have
strong temporal trial-by-trial variability (reviewed in Tal,
Neymotin, Bickel, Lakatos, & Schroeder, 2020). The same
could hold for other reported low-frequency effects attrib-
uted to true oscillators, or to stimulus tracking such as the
phrase-tracking by delta oscillations (Coopmans, De
Hoop, Hagoort, & Martin, 2022; Rimmele, Poeppel, &
Ghitza, 2021; Ten Oever & Martin, 2021; Kaufeld, Bosker,
et al., 2020; Meyer, 2018; Ding, Melloni, Zhang, Tian, &
Poeppel, 2016). Again, using single trial spectral methods
cannot diagnose whether a brain event is occurring at a
specific moment relative to a stimulus event. As such,
one needs to exclude alternative explanations such as

Figure 1. Slower components as a consequence of duration change or temporal variation. (A) ERPs can look the same when effects either are a
consequence of duration changes or temporal variation. (B) Filtered (1–10 Hz) examples of single trial P300 (left) and the average P300 (right). Dotted
lines are for comparisons between single trials and average. (C) Peak frequency estimation of single trials and of the average (in red) for one participant.
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trial-by-trial temporal variability changes in brain responses;
these changes could be random, or systematic, and, in
either case, would induce low-frequency or temporally
smeared effects as described here. Alternatively, condi-
tion manipulations might systematically change tempo-
ral variability at particular moments in time (see the
simulations in Variability in Neural Dynamics and Ana-
lytical Interpretation section). This situation could also
lead to low-frequency effects being misattributed to
other factors.

Temporal variability in brain responses can thus lead to
a lowering of apparent frequency content, as well as tem-
poral smearing of a short-duration spectral event.
Importantly however, we do not have to regard temporal
variability as unfortunate neural noise, or the byproduct
of neural computation, as not all temporal variability is
random. For example, neural response latencies to stim-
uli reduce as a function of stimulus intensity, such that the
higher the intensity, the faster or earlier the response
latency (Brisson, Robitaille, & Jolicœur, 2007). A rich liter-
ature of RT studies (both in the what and when domain)
have also shown that expected input is processed faster
andmore efficiently (Parasuraman, 1980) and that, overall,
decisions are made faster when input is expected
(Sternberg, 1966). This indicates that somewhere along
the processing pipeline, processing was sped up or occurred
earlier as a function of expectation (Duncan-Johnson &
Donchin, 1980; Parasuraman, 1980; Kutas, McCarthy, &
Donchin, 1977); in other words, when something was
processed interacted with what was processed and
perceived. We know that these top–down effects are
already present at early sensory states (Kok, Jehee, &
de Lange, 2012), although latency shifts at early sensory
components because of attention or expectancy are not
typically found in ERP research. It is, however, likely that
although the initial bottom–up sensory activation does
not result in a latency shift, top–down processing likely
affects the efficiency of the computation and, thereby,
its effective completion time (Bastos et al., 2012). Indeed,
decoding of expected phonemes is possible at an earlier
latency than the processing of unexpected phonemes
(Gwilliams, King, Marantz, & Poeppel, 2020). This pattern
fits with predictive coding, top–down, and Bayesian
frameworks, which would also predict optimized, and
thereby faster, processing for stimuli that are expected.

Although we know that neural latencies can depend on
the exact content that is being processed, the temporal
variability of brain processes is rarely included as a factor
in models of brain processing at the population level. For
example, although we theorize that processing is dynam-
ically optimized as a function of predictability, we typically
do not model that processing is finished earlier or occurred
at a faster speed (i.e., two different states of affairs). We
suggest that deeper investigation into how what/when
interactions can influence neural temporal variability is
warranted, both analytically and theoretically. These inter-
actions do not only pertain to latency shifts dependent on

the content of the input as described above (such that
“brain time” thus depends on environmental content),
but also relate to perceptual inferences that change as a
function of the presentation time (where “brain content”
thus depends on environmental time). In addition, such
what/when interactions are also relevant when perceptual
inference relies on learned associations, for example,
between the exact moments in time that an event occurs,
and the particular content of the event. In this case, the
brain learns a mapping or a systematic statistical relation-
ship between environmental content and timing.
Acknowledging that perception in the brain is often
based on all these types of what/when interactions,
which in turn result in temporal variability in brain com-
putation, will also dramatically impact our developing
theories of cognition.

WHAT/WHEN INTERDEPENDENCIES IN THE
ENVIRONMENT AND THE BRAIN

What/When Interdependencies in
the Environment

Classically, perceptual paradigms rely on stochasticity in
stimulus presentation time and concomitantly extracting
brain dynamics after stimulus onset. Although well-
controlled, it is far from how we are naturally presented
with stimuli in the environment. In fact, in the environ-
ment, there is a strong temporal dynamic in which differ-
ent input sequentially arises at effectors, receptors, and
sensory organs at semipredictable times. As such, most
would agree with a characterization of perception as the
monitoring of an ever-changing environment (White,
2018). Consequently, current brain states influence ongo-
ing and upcoming perceptual processes because they are
manifestations of carrying over information from previous
moments of perception into the next timestep. Indeed,
brain state influences perceptual processing—for exam-
ple, it has been shown that the brain state at the time of
stimulus onset influences the detection (Ten Oever, Van
Atteveldt, & Sack, 2015; Henry &Obleser, 2012; Mathewson,
Gratton, Fabiani, Beck, & Ro, 2009) and categorization
(Ten Oever, Meierdierks, Duecker, De Graaf, & Sack,
2020; Thézé, Giraud, & Mégevand, 2020; Kayser, McNair,
& Kayser, 2016; Ten Oever & Sack, 2015) of presented
stimuli, suggesting that the brain integrates the current
presented informationwith theprocessing occurring at that
moment. In a natural setting where information is a contin-
uous stream, the computations of the brain relating to a pre-
viously presented stimulus influence the processing of a
subsequent stimulus (or in a true continuous sense as a
dynamical temporal interaction; Summerfield & de Lange,
2014; Friston, 2011; Rao & Ballard, 1999; Frith & Dolan,
1997). Likely, initial information alters brain processing to
optimize the brain’s computation streamline of a subse-
quently presented stimulus (Summerfield & de Lange,
2014; Markman & Otto, 2011; Schroeder & Lakatos, 2009;

170 Journal of Cognitive Neuroscience Volume 36, Number 1

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/36/1/167/2190776/jocn_a_02067.pdf by M
ax Planck Institute for Psycholinguistics             user on 15 D

ecem
ber 2023



Niemi & Näätänen, 1981). The brain can do this as the
natural environment contains structural regularities (sta-
tistical or otherwise) that can be used to predict what
information is coming next.
Whenever a statistical regularity occurs in the environ-

ment, the brain could in principle exploit it. For example,
if you drop a ball from some height, it will fall on the floor
at a predictable time and make a predictable sound. When
one knows from previous experience what the most likely
future time and content of an event are, predictions about
sensory events can be made. It is well-established that the
brain creates these predictions to prepare for new percep-
tual input (Summerfield & de Lange, 2014; Frith & Dolan,
1997). This is a well-adapted mechanism that optimizes
the processing of the right information at the right time.
Studies investigating predictions in the what and when
domain typically vary the temporal predictability as well
as the content predictability and investigate their relative
neural instantiation (Figure 2A; Auksztulewicz et al., 2018;
Morillon, Schroeder, Wyart, & Arnal, 2016). As such, the
field has gained much understanding in the descriptions
of neural activity during predictive processing (Bastos
et al., 2012; Friston, 2005). However, what is rarely done,
either in presentation, analysis, modeling, or theorizing, is
tomake the content prediction contingent upon the event
time (Los et al., 2021; Ten Oever & Sack, 2019; van de Ven,
Kochs, Smulders, & De Weerd, 2017). By ignoring this
relation, one implicitly assumes that what and when are
independent in the brain: One can predict the content,
one can predict the time, but there is no integrated
content–time prediction, or reliance of one prediction
upon the other (Figure 2A). We are convinced this is inac-
curate because content and time predictions are often
integrated based on experience with the environment.
For example, imagine watching the finish of a profes-

sional cycling race on a crowded street. You have a good
view of the finish line, but many people are occluding your
view of themain street. Suddenly, you get a glimpse of two
cyclists sprinting to the finish, but your view of the last sev-
eral meters is blocked by other spectators. This does not

bother you because you can just redirect your view to the
finish line, where the cyclists will be in amatter of seconds.
Five seconds pass, but still no cyclists appear in your view
of the finish line. Now, your expectations have been vio-
lated. You return your gaze to the street and just realize
that both cyclists had turned a corner to another street,
taking an alternate route to the finish line that took them
around a corner, hidden from view (Figure 2B).

This example demonstrates that based on an earlier per-
ception, we can form strong expectations about when the
cyclists will arrive at the finish line; these predictions can
be formed in a matter of hundreds of milliseconds. Once
this time has passed, your expectation shifts to another
visual location to see if they are borne out. In other words,
the location of your attention depended on the time
passed (i.e., when influences what you expect). In this par-
ticular example, the expectation was so strong that some
might call it a violation of an expectation (Squires, Squires,
& Hillyard, 1975) rather than different types of expecta-
tions at different moments in time. However, it clearly
demonstrates that time can be an indicator for the
expected content in the environment; we will further dis-
cuss instances where expectation of different perceptual
contents across time can be equal, leading to interesting
behavioral patterns.

Speech acoustics strongly demonstrate how our per-
ceptual system is sensitive to statistics about what/when
relationships. Many phonetic classes are fully determined
by the temporal course of the spectral information in the
acoustics (Kaufeld, Ravenschlag, Meyer, Martin, & Bosker,
2020; Martin, Monahan, & Samuel, 2017; Ghitza, 2013;
Salomon, Espy-Wilson, & Deshmukh, 2004). One example
is VOT (Lisker & Abramson, 1967). The exact time at which
the vocal cords start vibrating can determine the differ-
ence between perceived consonants (e.g., [p] is unvoiced
and [b] is voiced). Simply by manipulating the time at
which voicing starts, one can influence the phones
and syllable that you hear—so when literally becomes
what. Similarly, audiovisual temporal statistics in speech
can also determine and influence phoneme, syllable,

Figure 2. What and when are likely dependent on each other. (A) Most studies independently vary the what and when predictions, but rarely are
what and when predictions made dependent on each other. (B) In natural situations, the time of input has a consequence on your content
expectations. When we drop a ball with an occluded path, early expectations will be guided to the left potential path, but later expectations will shift
to the right potential path.
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and word identification (Ten Oever, Sack, Wheat, Bien,
& van Atteveldt, 2013; Van Alphen & McQueen, 2006).
Finally, speeding up speech can also influence the per-
ception of subsequent words (Kaufeld, Naumann,
Meyer, Bosker, & Martin, 2020; Bosker, 2017a, 2017b).
Understanding speech is dependent on the knowledge
of how content–time patterns link to abstract phonetic,
phonological, prosodic, syllabic, morphemic, and lexical
representations; in fact, the when/what synergy is so funda-
mental to speech perception and language comprehension
that we are often not aware of it at all. Similarly, in music,
strong what/when relationships can also be seen. The brain
can predict which note is coming when, and it has been
shown that in many circumstances, there is an integrative
what/when representation in music, which can be modeled
accordingly (Pearce, 2018; Boltz, 1999).

In the visual domain, various memory studies have
shown that when you systematically present a specific item
at a specific time, participants will associate that time with
that specific item and perform better when the item is pre-
sented in the correct temporal context (Cravo, Rohenkohl,
Santos, & Nobre, 2017; van de Ven et al., 2017). This indi-
cates that the temporal context (not only the sequence of
events, but the precise time) is included in memory rep-
resentations of events (Ten Oever et al., 2016). These
types of effects have been corroborated in a recent associ-
ation study where different temporal probability distribu-
tions were associated with different perceptual cues (Los
et al., 2021). Although most of these experiments have
studied suprasecond intervals, we have recently shown
that also with subsecond intervals these associations can
be made (Ten Oever & Sack, 2019). Abstract memory
representations of events appear to contain integrated
content and temporal information; thus, content and time
cannot be thought of independently from the brain’s
perspective.

The previous sections illustrated that temporal informa-
tion is not merely an expected or unexpected variable, but
rather can serve as a cue to content, which in turn demon-
strates how abstract neural representations can be deter-
mined by temporal dynamics. For example, VOT cannot
be classified as an expected or unexpected timing as it
determines—and is therefore part of the representation
of—phones and other linguistic categories. Of course, in
many other cases, timing alone does not fully determine
the percept (as with VOT), but, rather, timing is a proba-
bilistic cue for an item’s content (Martin, 2016; Ernst &
Banks, 2002). As with any probabilistic cue, the brain will
show some robustness to deviations from the expected
temporal dynamics (Pefkou, Arnal, Fontolan, & Giraud,
2017; Ghitza, 2014). For example, in memory paradigms,
participants can still perform a memory task in the face of
unexpected or deviant temporal dynamics, but perform
worse if an item is not presented within the correct tem-
poral context. Whether deterministic or probabilistic, it is
likely that temporal context is part of the neural represen-
tation of an external event, and thus, more research is

needed to understand how perceptual, memory, and
cognitive systems deal with these associations.

What/When Interdependencies in the Brain

Because stimulus and event time can determine the
interpretation of that stimulus or event, it follows that the
particular time at which the brain is computing becomes
relevant in theories and models of perception and cogni-
tion. The brain does not passively wait until input arrives;
as such, the timing of neural activation is not merely the
time that the brain detects that an event is happening.
Instead, the temporal dynamics of brain activity is impor-
tant for the interpretation of external events. There is a
large literature on temporal properties that modulate
the detection of an event—for example, inattentional
blindness shows temporal windows during which the
brain poorly detects visual stimuli (Simons, 2000). How-
ever, here, we also highlight situations in which time influ-
ences the qualitative interpretation of the perceptual
event (i.e., interpreting an event as Event A or Event B).
Observation of neural dynamics indicates that brain time
likely has an influence on the interpretation of an event
(Mehta, Lee, & Wilson, 2002; Panzeri, Petersen, Schultz,
Lebedev, & Diamond, 2001). We here define brain time
as the time at which a particular brain area processes an
external event, either to be forwarded and processed by
another area or to be used for perceptual inference.
When stimulus input arrives, the initial sweep of infor-

mation might be very coarse, and only neuronal popula-
tions that are receptive to the input will activate (Petras,
Ten Oever, Jacobs, & Goffaux, 2019; Kay & Yeatman,
2017). It has been proposed that the first active populations
might contain the most relevant information (VanRullen,
Guyonneau, & Thorpe, 2005; Mehta et al., 2002). In other
words, the time at which populations are active is relevant
to stimulus interpretation, such that spike timing has been
proposed as a way to code stimulus-identity or stimulus-
related feature information (Downer, Bigelow, Runfeldt,
& Malone, 2021; VanRullen et al., 2005; Panzeri et al.,
2001). Even without external events, this temporal code
might serve to relay different types of stimulus informa-
tion in parallel (Lisman & Jensen, 2013). The order of
spike times is a consequence of activity patterns aligning
to ongoing oscillations that modulate overall excitability of
a population (Lakatos et al., 2005; Buzsáki & Draguhn,
2004). Neurons with higher base excitability will be active
earlier (at a less excitable phase) relative to other neurons,
which creates a phase map of excitability states (Ten Oever
& Martin, 2021; Jensen, Gips, Bergmann, & Bonnefond,
2014; Mehta et al., 2002). Saliency dependence (and
thereby base excitability variation) in the exact phase of
optimal processing has recently been shown in a behav-
ioral and EEG study (Jia, Fan, & Luo, 2022). In addition,
different connectivity between neuronal ensembles might
engage in spike-time-dependent plasticity, such that con-
nections are solely strengthened when postsynaptic
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activity follows at a specific temporal delay from presynap-
tic activity (Feldman, 2000; Markram, Lübke, Frotscher, &
Sakmann, 1997). These types of time- or phase-coded
spiking operations could also provide a means for hierar-
chical structure building (Martin & Doumas, 2017, 2020)
and seem vital for efficient communication between distant
brain areas (Singer, 2009; Fries, 2005; Von der Malsburg,
1995). These putative neural encoding schemes show that
brain time, or the temporal dynamics of population activity,
could be an important factor for both theories of informa-
tion encoding in neural systems and for extracting informa-
tion from neural readouts during data analysis.
How can the brain leverage temporal dynamics across

regions to optimize its cognitive and behavioral outcomes,
while concurrently being so biased by timing in its inter-
pretation of its surroundings? Such a computational situa-
tion seems to require a control structure for temporal
dynamics, such as a stand-alone timer, clock, or counter,
which in turn seems highly implausible, both from a for-
mal and neurobiological standpoint. As such, it is difficult
to imagine how temporal variation could change and align
computation to be sensitive to time–content associations
in the brainwithout some formof dynamic self-organization
(see next section).

Mapping what/when Dynamics Inside and
Outside the Brain

The putative goal of the perceptual system is to determine
when what is happening in the environment in the service
of cognition and behavior. If, as argued above, the time-of-
neural-response is dependent on the content itself, then
the brain faces yet another challenging puzzle: to relate
its own temporal dynamics of internal computation to
ongoing stimulus time. This transduction of stimulus time
to brain time is not infallible as evidenced by various tem-
poral illusions. For example, if a moving dot pattern
changes both in direction and in color of the dots at the
same time, participants will first perceive the color change
and only later perceive the movement change (the differ-
ence can be as large as 80 msec; Johnston, Arnold, &
Nishida, 2006; Moutoussis & Zeki, 1997a). Color and
movements are processed in different brain regions and
are processed with different temporal dynamics. In the
illusion, the speed and latency of color and movement
processing differ, which lead to an incorrect perceptual
inference of temporal occurrence (Moutoussis & Zeki,
1997b). In the auditory domain, it has been shown that
when participants are asked to mark the time at which a
noise, such as a click, occurs in ongoing speech, they sys-
tematically misalign it to an earlier point in the sentence
(Ladefoged & Broadbent, 1960) and typically have a bias
toward placing the noise at syntactic boundaries (Fodor
& Bever, 1965). In the memory system, temporal order
effects also make it more difficult to judge temporal order
across encode events compared with within them (Ezzyat
&Davachi, 2014; Alvarez, 2011). These and other temporal

illusions demonstrate that the brain’s temporal inferences
do not reflect the veridical stimulus time of perceptual
input (for a review, see Eagleman, 2008).

The brain’s inferences about timing also rely on calibra-
tion of its estimations in the temporal domain (Vroomen
& Keetels, 2010). As the brain copes with different sources
of temporal uncertainty, it must also adapt its estimation of
event timing based on statistical evidence. If one systema-
tically flashes audiovisual stimuli at an offset, participants
will perceive the apparent simultaneity as being shifted
toward the offset (Fujisaki, Shimojo, Kashino, & Nishida,
2004). In a similar audiovisual flash paradigm, it has been
shown that the neural response to the rate of the flashed
audiovisual events shifts its phase together with the per-
ceptual shift in perceived simultaneity, suggesting that
neural timing shifts together with perceived timing
(Kösem, Gramfort, & van Wassenhove, 2014). Temporal
calibration effects have also been reported in the tactile
domain (Keetels & Vroomen, 2008) and have been shown
to follow Bayesian inference rules (Miyazaki, Yamamoto,
Uchida, & Kitazawa, 2006).

Here, we have focused on temporal estimation in per-
ception, but ultimately, timing in perception is crucial to
perform coordinated action at the right moment (De
Kock, Gladhill, Ali, Joiner, & Wiener, 2021; Georgopoulos,
2002), in cognition, and behavior more broadly. In speech
production, coordinated temporally accurate articulation
directly determines the content of what is uttered. It is
thus no wonder that a widespread motor network has
been implicated as the brain basis of temporal perception
(Kotz, 2011; Ivry & Spencer, 2004; Harrington, Haaland, &
Hermanowitz, 1998). However, it is also evident that not
all temporal illusions arise from the motor system (e.g.,
as the dynamics of temporal estimation of color and
motion differ in the early perceptual system). Thus, it is
likely that the brain must rely on multiple scales and hier-
archies across systems to compute temporal information
(Mauk & Buonomano, 2004; Mangels, Ivry, & Shimizu,
1998). Coordinated timed action likely requires learning,
which allows for adjustments in temporal estimation,
which would be based on the temporal variability that
was observed or imposed during perception.

As we have posited thus far, temporal variability in per-
ception likely increases as more computational stages
have to be passed (viz., each stage adds some variability).
Typically, higher-order regions also must cope with the
integration of information either across different locations
or different temporal timescales to create abstract repre-
sentations. It is likely that brain regions and networks have
developed temporal invariance or robustness to cope with
wider or more variable temporal scales of input. Especially
if the time of presentation is part of an abstract (memory)
representation, it is likely that this representation can be
separated from the particular time of computation during
an instance. Oneway to separate the time of neural activity
from the temporal dynamics in the environment is to keep
perceptual representations active for a longer duration by
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using sustained responses (Courtney, Ungerleider, Keil, &
Haxby, 1997). Another way is to use lower frequency oscil-
lations. As these oscillations extend activation for a longer
period, and provide longer windows of excitability, the
exact moment at which information arrives can be more
variable (Herbst & Obleser, 2019; Ten Oever et al., 2015).
In addition, low-frequency oscillations could serve to rep-
resent information that is integrated across a wider time-
scale (Meyer, Sun, &Martin, 2020). This has been proposed
in the domain of language processing where objects like
phrases and sentences must be represented by (a network
of) neural assemblies. Such abstractmental representations
are likely to the product of perceptual inference, as they are
not directly perceivable from sensory input alone, and
required previous experience (viz., knowledge of a given
language) to be perceived (Martin, 2016, 2020). As such,
neural dynamics relating to phrase and sentence represen-
tation can be separated from the exact time of the compu-
tation (Martin & Doumas, 2017). However, as temporal
variability likely also increases, the more information is
abstracted away from sensation during perception and
cognition; it is unclear if low-frequency oscillations occur
because of integration (Martin &Doumas, 2017; Poeppel,
2003), because of a mixture of computations (Martin,
2020), or because of temporal variability alone (see Ten
Oever, Kaushik, & Martin, 2022, and the simulations in the
Variability in Neural Dynamics and Analytical Interpretation
section).

Even if the brain indeed predicts what is happening
when and sensitizes processing at specific moments for
specific content, it remains a puzzle how these expecta-
tions are operationalized considering that the brain has
to overcome the temporal variability in neural processing
as well as deal with known interdependence of what and
when in the environment. Sensitization to predictable
stimuli in time and content has been shown to occur close
to stimulus onset (e.g., 40 msec before the onset; Kok,
Mostert, & De Lange, 2017). Furthermore, sensitization
can occur much earlier for stimuli that are predictable in
content, but unpredictable in time (Mohanta et al., 2021).
However, it is still unclear how the brain creates this tem-
poral prediction, what its content or format is, and how it is
deployed. Moreover, it is also unclear whether the brain
provides feedback to different neural representations at
different moments in time and how it would do so as a sys-
tem, especially in cases where the content of the stimulus
depends on time that has passed or on duration.

Oscillations Make what/when Interdependencies
More Complex

The brain has strong intrinsic oscillatory dynamics as a
function of, and which modulate, the ongoing excitability
of neuronal populations (Buzsáki, 2004). The temporal
dynamics of oscillations modulate and interact with the
impulse responses generated as a consequence of sensa-
tion, perception, and cognitive computations (Lakatos,

Karmos, Mehta, Ulbert, & Schroeder, 2008). Oscillations
have been argued to fulfill important computational roles
in the brain such as the parsing of stimulus input (Giraud
& Poeppel, 2012; VanRullen & Koch, 2003), the optimiza-
tion of communication within (Schroeder & Lakatos,
2009) and across distant brain areas (Fries, 2005), and also
the organization of seemingly chaotic responses of individ-
ual neurons (Lisman & Jensen, 2013). Adding oscillatory
features to a neural system has been argued to increase
the representational space to store and differentiate better
neural patterns both empirically and in computational
models (Martin, 2020; Schaefer, Angelo, Spors, & Margrie,
2006). Whereas on the one hand, oscillations streamline
neural processing, they also add another level of complexity
to investigate neural time courses.
Just as top–down predictions about what is happening

next can sensitize specific neural representations (Kok
et al., 2012), oscillations can modulate the excitability of
whole regions (Buzsáki & Draguhn, 2004). Therefore,
overall activation will occur earlier if oscillations happen
to be at an excitable phase; oscillations thus act as a tem-
poral filter (Lakatos et al., 2013). Presenting brief stimuli at
low excitability phases of an oscillatory cycle can reduce
the chance of detecting the stimulus (Mathewson et al.,
2009). On the other hand, when both top–down predic-
tions and oscillations interact, activity can occur during
low-excitability phases because the gain from the top–
down prediction sensitizes processing (Mehta et al.,
2002), leading to a phase gradient of excitability (Ten
Oever & Martin, 2021; Jensen, Bonnefond, & VanRullen,
2012; Mehta et al., 2002).
Inputs that arrive during high excitability phases have

the highest chance of reaching threshold; it has been pro-
posed that the brain as a system proactively aligns high
excitability phases to stimulus input when it is able to pre-
dict when a stimulus will occur (Rimmele, Morillon,
Poeppel, & Arnal, 2018; Schroeder, Lakatos, Kajikawa,
Partan, & Puce, 2008). However, if the content of subse-
quently presented stimuli varies, and especially the predict-
ability of the content, it is not evident how the brain could
accommodate such an alignment. This situation occurs, for
example, in speech, wherewords following each other have
varying content predictability levels. Another example is a
dance performance where often particular movements
are more predictable than others. In both these examples,
the input pertains temporal predictability and we can illus-
trate how alignment to this temporal input structure
becomes difficult when content predictability varies. In
Figure 3A, a rhythmic input stream is presented. However,
different neural regions might be sensitive to different con-
tent in the input stream because of top–down predictive
processes (or alternatively they are intrinsically more sensi-
tive). In this example, content that is predicted by a specific
region is followed by content that is not predicted. If ongo-
ing neural oscillations align with the expected time of acti-
vation based on the predicted content, the phase of the
oscillation will not be at an optimal point for the input of
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the unpredicted content, because input to which the brain
is already less sensitized will arrive during a lower excitabil-
ity period, essentially resulting in a net higher threshold for
excitability for already lower-sensitized input (top align-
ment in Figure 3A). This state of affairs does not seem effi-
cient because it would polarize or exaggerate sensitivity to
predicted and unpredicted content, possibly to the degree
that predicted content is perceived even when it does not
occur (viz., resulting in extreme andhighly frequent percep-
tual and cognitive illusions) and unpredicted content is
summarily missed or undetectable. This situation echoes
neither human behavior nor optimality in neural computa-
tion.Aputativelybetter strategymightbetoalignoscillations
to the input to which the brain is less sensitized (bottom
alignment in Figure 3A; TenOever &Martin, 2021). Alterna-
tively, it is anoption tonot rely on low-frequency oscillations
and revert to a high-frequency domain in which there are
many frequently occurring high-excitable phases making it
unlikely that important information is missed (Schroeder
& Lakatos, 2009; Fries, Nikolic, & Singer, 2007). Note, how-
ever, that low-frequency oscillations have often been
observed during speech processing, a situation in which
both temporal and content predictability variations occur
(Giraud & Poeppel, 2012). To sum up, although we know
that the brain proactively changes its low-frequency oscilla-
toryphasetooptimizeprocessing(Samaha,Bauer,Cimaroli,
& Postle, 2015; Lakatos et al., 2008, 2013), it remains unclear
how thismechanism is interactively influenced by both the
temporal and content predictability of the input.
As outlined in previous sections, the time at which stim-

ulus input arrives can influence what is perceived; this
principle is also true for phase, and thus, the phase at
which a stimulus arrives now also must be considered.
For example, when an ambiguous or noisy input is pre-
sented, if a neural representation has a higher base excit-
ability (i.e., the brain is sensitized to a stimulus input), an
ambiguous stimulus input at a lower excitability point
might only excite that single neural representation. How-
ever, during a higher excitability phase, more neural

representation might be available to reach activation,
and differentiation between stimulus types would deterio-
rate (Schaefer et al., 2006). It is even conceivable that dif-
ferent neural representations have different excitabilities
depending on oscillatory phase (Figure 3B). Because of
the excitability level of an underlying neural representa-
tion at a specific phase, one representation or another rep-
resentation might be activated (see e.g., Ten Oever &
Sack, 2015; Lee, Simpson, Logothetis, & Rainer, 2005).
In this way, phase of activation is related to the content
of the stimulus (Panzeri, Macke, Gross, & Kayser, 2015).
These examples demonstrate that time–content interde-
pendence is important to consider when theorizing about
the functional role of oscillations in perception, cognition,
and behavior.

VARIABILITY IN NEURAL DYNAMICS AND
ANALYTICAL INTERPRETATION

Problems for Current Methodologies

In the previous section, we discussed what/when interde-
pendence in the environment and in neural computation.
When environmental what/when interdependence is not
explicitly modeled, it leads to the unsound conclusion that
timing and content information are processed indepen-
dently in the brain. Similarly, neglecting what/when inter-
dependence in theories of neural computation leads to
questionable analytical interpretation of neural readouts,
because temporal variability in neural responses is not
explicitly taken into account during data analysis. This is
an analytical problem for many studies in perception and
cognition because brain time is almost exclusively
assumed to be relative to the onset of a perceptual event,
andmost statistical models do not explicitly model tempo-
ral shifts. If temporal shifts are absolute, they might be
expressed as condition differences, because latency differ-
ences can be explicitly modeled by extracting differences
in peak RT. If there is not an absolute shift, but rather

Figure 3. Oscillatory interactions with when and what predictions. (A) Dependent on the excitability of a neural representation, the neural latency of
activation will vary. It is unclear whether neural oscillations will align to predictable input with a high excitable neural representation that activates
representations early (top alignment), will align to unpredictable input with a low excitable neural representation that activates representations later
(bottom alignment), or will not align at all (not visualized). (B) Activation of a representation might be dependent on the time of activation if
excitability is not evenly modulated among neural representations. Here, we only represent the first time a cortical representation is activated.
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increased temporal variation for one condition, latency
effects might show up as amplitude or frequency shifts
(also see Figure 1).

In recent years, there has been an increase in the appli-
cation of complex statistical models to extract relevant
brain dynamics in electrophysiology. These approaches
have strongly increased our ability to dissociate different
brain states. It is, for example, now possible to analyze
ongoing signals (e.g., ongoing speech) by taking the auto-
correlated structure of the electrophysiological data into
account using, for example, ridge regression (viz., in the
EEG and magnetoencephalography field, this encoding
or regression model is commonly known as the temporal
response function [TRF]; Crosse, Di Liberto, Bednar, &
Lalor, 2016; Zion Golumbic et al., 2013; Ringach &
Shapley, 2004). In addition, the usage of multivariate
approaches has made it possible to identify differences
in distributed patterns in the brain rather than being
restricted to observing only absolute changes as identified
with univariate approaches (Formisano, De Martino, Bonte,
& Goebel, 2008; Haxby et al., 2001). However, not many of
these approaches have focused on explicitly modeling the
fact that temporal shifts, rather than true differences in
neural representation of the features, could account for
any observed differences by encoding feature.

Insensitivity to Amplitude and Latency Effects
versus Temporal Shifts in the Modeling and
Decoding of Neural Responses

TRFs are widely used for analyzing ongoing EEG or mag-
netoencephalography, data especially in the auditory
domain (Weissbart, Kandylaki, & Reichenbach, 2020;
Brodbeck, Hong, & Simon, 2018; Zion Golumbic et al.,
2013). This is because they can handle autocorrelated data
well and can thereby decompose temporal overlapping
responses typically found in ongoing speech (Crosse
et al., 2016). Moreover, they allow incorporation of contin-
uous factors such as the envelope of the data (Hausfeld,
Riecke, Valente, & Formisano, 2018). In addition, factors
of interest beyond the acoustics that are continuous can
be modeled such as the predictability or entropy of words
in context (Weissbart et al., 2020; Brodbeck et al., 2018).

The TRF reflects the time course of regression coeffi-
cients of the model at different delays; performance of
the full regression model can be estimated through
cross-validation (Crosse et al., 2016). Of course, from the
model’s perspective, it does not matter whether ampli-
tude differences are generated by variation in amplitude
or by shifts in latency (Figure 4). Any latency shift reflects
a local amplitude shift such that when one condition has a
later response, there will also be an amplitude difference
between conditions at different time points. Therefore,
the TRF will look almost identical. TRFs also look similar
to amplitude shifts when simply changing condition-
specific temporal variation in the response. Similar insen-
sitivity to temporal variability occurs for methods in which

data are collapsed over time. For example, decoding
methods often include a range of time points over which
decoding occurs, making it impossible to dissociate
whether the outcome relates to temporal variation or
amplitude changes. Of course, it is possible to decode
using another means of variance, such as the spatial or
spectral distribution, and then the analysis would be more
sensitive to temporal differences and variation.

Temporal Variability Can Induce
Low-frequency Effects

Temporal variability in neural response also changes the
spectral content of the analyzed signal. Various studies
show that although low-frequency spectral content differ-
ences do not exist in the acoustics, neural responses at this
rate can be still found (Kaufeld, Bosker, et al., 2020; Keitel,
Gross, & Kayser, 2018; Ding et al., 2016). One interpreta-
tion is that lower frequency oscillations integrate
responses across a wider timescale (Henin et al., 2021;
Meyer et al., 2020). Although an interesting hypothesis,
the mere presence of low-frequency peaks in the spectra
(i.e., when the peaks do not exist in the acoustics) does
not necessitate the presence or involvement of intrinsic
low-frequency oscillations in the brain. It is possible that
the latency or variance of neural activation is modulated
through, for example, a linguistic event that occurs at a
low-frequency rate (Figure 5A). These effects can be seen
as low-frequency peaks in either the power spectra or inter-
trial coherence (Figure 5B). Of course, the measured signal
does contain this low-frequency pattern as the signal is mod-
ulated at this rate. However, it is an open discussion whether
we should call this an oscillation arising from the brain as a
computational means for integration or rather a stimulus-
induced response, which happens to occur at a later or

Figure 4. Temporal shifts could underlie found TRF effect. TRFs can be
identical for underlying effects caused by amplitude shifts, latency
shifts, or variance shifts.
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with a more/ less variable time (Zoefel, Ten Oever, &
Sack, 2018). If the latter, one would predict no peak when
we correct for the variance in the timing of brain
responses (themetatheoretical intricacies of interpreting
these types of results is further analyzed in Ten Oever
et al., 2022, and Guest & Martin, 2023).

Temporal Variability Can Induce Low-frequency
Effects, Even on Filtered Data

For single trials, filtering can solve temporal variability
problems as the frequency content of that signal is fully
dependent on a single event (Figure 1). When studying
continuous data, one filters signals across multiple stimuli.
If a single event has a different temporal variability, or con-
tains a latency shift, the filtered data will contain the low-
frequency signal (Figure 5). This situation cannot be
avoided as a longer window is needed to estimate low
frequencies, which, for continuous data, will contain
responses to nearby stimuli. When using this type of fil-
tered data in other analyses, one has to be aware that the
presence of a low-power signal, or increased variance in
the power signal, can lead to potentially spurious
increased tracking at that frequency. We here simulate
data at an average stimulus presentation rate of 4 Hz sim-
ilar to the previous section. Every fourth signal, we either
modulate the amplitude, induce a temporal latency shift,
or vary the temporal variability (Figure 6A). Then, mutual
information (MI) (Ince et al., 2017) is calculated between
filtered stimulus data (aligned with onset of the stimuli
convoluted with a Gaussian) and the filtered response
data (responses are broadband 1- to 20-Hz signal of a 0.4
duration plus an additional 1/f noise). The outcome shows
that decreasing temporal variability can increase mutual
information at delta frequencies even when the stimulus
does not contain a 1-Hz signal and the delta itself is not

modulated in the responses (Figure 6B). Instead, merely
reducing the temporal variability can cause this effect.
This might seem counterintuitive, but having a more
systematic neural pattern can have an influence on the
mutual information with an external stimulus, for exam-
ple, because the phase estimation is more consistent.

Figure 5. Temporal shifts could underlie found low-frequency effects. (A) One hertz fit (red) on responses that changes amplitude, latency, or
variance. (B) Power and ITC effects can be highly similar for underlying effects caused by amplitude shifts, latency shifts, or variance shifts.

Figure 6. Temporal variability changes can influence tracking results.
(A) Conditions for the simulation. (B) Results for the MI analysis.
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Note that, in our simulation, this effect extended for the
theta frequency band (but not the alpha and beta band).
Although we show that temporal variability can explain
some of previously reported effects, we do not claim
that temporal variability is by definition the mechanism
behind these low-frequency effects. Instead, we reiter-
ate that one must be careful when interpreting data
and attentive and open to alternative explanations.

Inferences about Brain Computation and Our
Analytical Choices

If one is solely interested whether brain responses change
as a function of condition or other factors (either included
in a regression or part of experimental design), any
observed difference in condition would indicate success.
However, we hope that, as scientists, we aim for more
explanatory satisfaction and, thus, that we try to under-
stand the underlying causal structure that an observed dif-
ference reflects. To do so, it is critical to understand what
can cause a potential difference in an analysis or model, as
it is by no means always obvious. We here show that tem-
poral variability, potentially caused bywhat/when interde-
pendence, is an important factor to take into consideration,
especially in the interpretation of magneto- and electro-
physiological data. A TRF cannot directly be inferred to
reflect amplitude or latency effects. A peak in the spectral
domain could be a consequence of amplitude shift,
latency shift, or an actual neural oscillation at the specified
rate. Excluding alternative explanations for our results in
our scientific practice is critically important to better
understand the mechanisms by which our effects arise,
and thereby build better theories of brain computation
(Guest & Martin, 2023).

To investigate whether temporal variability is part of the
underlying mechanism driving our findings, below, we
propose a few practices and future developments needed
to further investigate if effects are a consequence of tem-
poral variability:

• In a TRF analysis, redoing the TRF analysis on a
median split of a significant linear factor could pro-
vide information about what the underlying causes
of the significant TRF effects are. If there are clear
latency differences in the two TRFs, then one could
assume that the underlying effect is likely because of
latency shifts that systematically relate to the factor
of interest (Figure 4B). If there are amplitude differ-
ences, the cause is more likely an amplitude varia-
tion or a change in temporal variability across the
linear factor (Figure 4A and 4C). It is more difficult
to dissociate whether TRFs are caused by changes
in amplitude or changes in temporal variability.

• One approach for the low-frequency effects in a
steady-state analysis described in the Temporal Var-
iability Can Induce Low-frequency Effects section is
to investigate the instantaneous phase response at

the stimulus repetition rate. For amplitude effects,
one would expect that the phase response at the
stimulus repetition rate does not change. However,
the phase response because of latency shifts or
changes in temporal variability should lead to syste-
matically delayed phase responses or more variable
phase responses, respectively. Note, however, that
effects found via these phase responses could be
small and dependent on a waveform shape of the
underlying oscillation (Jones, 2016). Therefore, it
is difficult to exclude that the absence of a
latency/temporal variation increases in the absence
of these changes. As with the TRF analysis, it seems
easier to find effects because of latency shifts com-
pared with changes in temporal variability.

• Generally, we advise performing analyses that do
not collapse across many time points, which is
sometimes done in decoding approaches.

• The same goes for collapsing across trials either in
the time or frequency domain. More approaches
are being developed to extract single trial oscillatory
events from electrophysiological data and quantify
them (Quinn, Lopes-dos-Santos, Dupret, Nobre, &
Woolrich, 2021; Donoghue et al., 2020; Jones,
2016). For example, Shin, Law, Tsutsui, Moore,
and Jones (2017) developed a way to extra individual
beta events. Something that might also be possible
for other frequency bands is as follows: Separating
different oscillatory states that occur in parallel in a
data driven manner, for example, done in an empir-
ical mode decomposition (Huang et al., 1998),
could also aid a single trial analysis.

• New approaches are being developed that perform
temporal alignment to optimize the temporal corre-
lation across trials (van Bree et al., 2022; Haxby,
Guntupalli, Nastase, & Feilong, 2020; Zoumpoulaki,
Alsufyani, Filetti, Brammer, & Bowman, 2015).
Some of these methods could be further developed
to investigate whether alignment parameters syste-
matically relate to physiological factors of interest.

• Ultimately, the tendency to go for more naturalistic
designs makes it more difficult to unequivocally
determine the mechanistic underpinnings of what
and when interactions. We therefore believe that
to supplement the naturalistic designs, which have
clear and unequivocal value, we will need well-
designed, experimentally controlled studies to
further disentangle these interactions.

WHAT ABOUT WHEN?

The temporal dynamics of brain responses are—
definitionally—different, every time a stimulus is pre-
sented. This variability depends not only on the features
of the perceptual input but also on differences in brain
and bodily state at the time of presentation (Schroeder,
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Wilson, Radman, Scharfman, & Lakatos, 2010). We here
have argued that temporal variability should not bemerely
seen as a source of noise that can lower the signal-to-noise
ratio of our analyses (also see Panzeri et al., 2015). Instead,
the time of information in the external world (stimulus
time) as well as the timing of perceptual and cognitive
computations as realized in the brain (brain time) are
important for stimulus information processing and inter-
pretation (Panzeri et al., 2015; Ten Oever & Sack, 2015).
Indeed, the environment, content, and timecourse are
dependent on each other, and the brain likely has an inte-
grated time–content representation of external stimuli
and events in the world. Although this representation
does not have to be operationalized at the same timescales
as the external world (Dainton, 2010), temporal dynamics
of the external world do need to be integrated with the
temporal dynamics of the brain. As such, what (content)
and when (stimulus time vs. brain time) are highly inter-
twined if not indivisible in the brain. The time of the pre-
sentation cues the content of a stimulus (Reinisch &
Sjerps, 2013; Ten Oever et al., 2013; Figure 3A), and the
content of a stimulus can influence the timing of process-
ing (Los et al., 2021; Figure 3B).
Similarly, in most data analyses approaches, we ignore

temporal variability as a potential explanation of our
results at our own peril. The most common data analyses
methods do not take in to account inherent temporal var-
iability in neural responses; we have shown that ignoring
temporal variability can lead to spurious effects that can be
misinterpreted. Our hypotheses should be guided by what
we know about temporal dynamics in the brain, and we
should therefore not only include variations in content
(e.g., pitch, lexical information, word onset, predictability)
as factors in ourmodels, but also their interaction with and
across time. The relationship between neural computa-
tion and time needs deeper attention in our analytical
methods, models, and theories, and especially in methods
that can deal with expected (but not exact) time shifts
(van Bree et al., 2022; Zoumpoulaki et al., 2015). Such
an approach will enable us to differentiate temporal var-
iability from other interpretations of our data and to for-
mulate more comprehensive theories that incorporate
temporal variability as a feature, not a bug.
To get a better understanding of how what and when

depend upon each other, we no doubt need more exper-
imental and modeling work. In the most basic form, this
can be done by experimentally changing the time of stim-
ulus presentation and hypothesizing about behavioral
changes. There are many studies that show that the stim-
ulus time of presentation can impact behavioral detec-
tion or accuracy (Fiebelkorn, Saalmann, & Kastner,
2013; Jones, Johnston, & Puente, 2006), but fewer inves-
tigate how temporal dynamics create an overall bias to
what participants perceive (Ten Oever & Sack, 2019;
van de Ven et al., 2017; Reinisch & Sjerps, 2013). Therefore,
more studies are needed to get a better understanding
of thewhat/when relationship. Besides these behavioral

studies, we need to go the extra mile to link what/when
dependence to the ongoing temporal dynamics in the
brain (Kösem et al., 2018; Ten Oever & Sack, 2015). This
link can be formed by building models (theoretical and
computational; Guest & Martin, 2021). Ultimately, from
thebrain’s-eye-view,what andwhen are indivisible aspects
of interpreting the perceptual world, cognizing, and behav-
ing in it; this principleneeds tobe reflected inour theoriesof
brain computation—in fact, it is crucial for any account of
how the brain computes and represents the perceptual
world, and in turn acts on it via cognition and behavior.

METHODS

ERP Simulations

We simulated howmodulations in duration versus tempo-
ral variability can lead to similar-looking ERPs. To do so, we
simulated five ERP components (P1, N1, P2, N2, and P3) at
an average peak time of 80, 100, 180, 220, 400 msec,
respectively. Each component was modeled as a Gaussian
shape at varying amplitudes. For the durationmodulation,
the width and amplitude of the Gaussian were 10, 10, 20,
20, and 100 msec and 2,−3, 2.5,−1, and 2.5, respectively.
For the duration modulation, the width and amplitude of
the Gaussian were 10, 10, 20, 20, and 100 msec and 2,−3,
2.5, −1, and 2.5, respectively. For the temporal variability
modulation, the width of the Gaussian was always 25 msec
and the amplitude was 2,−3, 2.5,−1, and 6. Temporal var-
iability was extracted from a normal distribution centered
around the peak time with a width equal to the dura-
tion length for the duration modulation (10, 10, 20,
20, 100msec). We added noise from a normal distribution
(mean: 0, std: 1) multiplied with 0.05. One thousand
permutations were run, and the average ERP and the
individual trials were extracted.

P300 Results

We used data collected at Maastricht University from one
participant who took part in a study investigating P300 (of
a total of 14 participants collected for this study). The
study was approved by the local ethics board at Maastricht
University, and all participants gave informed consent.
Data were collected at a sampling rate of 200 Hz with an
online filter set at 35 Hz. In this study, participants had to
respond to digits 3, 6, 8, and 9. In half of the trials, partic-
ipants had to respond with the left hand to 3 and 6, and
participants had to respond with the right hand to 8 and
9. In other blocks, the mapping was reversed. Digits were
presented at a size of 0.87° × 1.37°. On half the trials, digits
were visually degraded by overlaying a checkerboard
pattern. Only trials with a degraded digit were used for
the present purpose. ISI was jittered between 3950 and
4450msec. Preprocessing involved epoching from−0.2 to
1.2 sec around stimulus onset, and removal of eye move-
ment artifacts with independent component analysis.
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After that, trials with EEG exceeding 75 uV were detected
as artifacts and excluded. For all other trials, we performed
a fast Fourier transform (FFT) analysis using Hanning
tapers (and no further padding) as implemented in Field-
trip on single trials or on the trial average and extracted the
log of the power. The peak frequency within a range of
2–5 Hz was extracted per trial and for the average (within
the known band of the P300 and ensuring no influence of
the alpha range, which commonly has high power in single
trials). To visualize the ERP and single trial examples, we
bandpass-filtered the data between 1 and 10 Hz.

TRF Simulations

We simulated how TRF can look similar when differences
are either based on amplitude shifts, latency shifts, or dif-
ference in temporal variability. We simulated four condi-
tions with the following base values: amplitude: 1; latency:
0.08 sec; latency variability: 0.03 sec. For the amplitude
modulation, we varied the amplitude across conditions
(0.85, 0.95, 1.05, 1.15). For the latency modulation, we
varied the latency across conditions (0.08, 0.1, 0.12, and
0.14 sec) and set the variability to 0.03. For the variability
modulation, we varied the variability across conditions
(0.04, 0.03, 0.02, and 0.01 sec). Stimuli were modeled
as a 4-Hz sinusoidal with a Hanning taper of a 0.3-sec
duration. Stimulus were spaced every 500 msec with
4000 stimuli. Normal noise (mean: 0, std: 1) at an ampli-
tude of 0.2 was added to the stimuli. We calculated the
TRF using defining the factor based on the onset of the
words at an amplitude ranging from 1 to 4. TRF were
estimated at −0.1 to 0.6 sec using the MNE Python
TimeDelayingRidge implementation.

Low-frequency Simulations

Stimuli were the same stimuli as for the TRF simulations
but spaced at a 4-Hz rate. We simulated four conditions
with the following base values: amplitude: 1; latency:
0.11 sec; latency variability: 0.05 sec. Then, we varied
how every fourth stimulus was modulated (so at a 1-Hz
rate). For the amplitude modulation, we varied the ampli-
tude of the fourth stimulus to 5. For the latency modula-
tion, we increased the latency of the fourth stimulus by
0.39–0.5 sec. For the variability modulation, we varied
the temporal variability to 0.4 sec. Then, we performed
an FFT analysis and extracted the power over the complete
time course. We also extracted the intertrial coherence by
epoching the data in nonoverlapping 4-sec epochs and cal-
culating inferior temporal cortex from the phase estimated
from the FFT estimation. For the visualization of the exam-
ples (Figure 5A) of a 1-Hz fit, we kept the same parameters
except that the base variability was set to 0 (to improve
visualization of the variability) and the amplitude modula-
tion to 2. Fitting was performed using a sinus fit using a
least square implementation.

Mutual Information Simulations

The MI simulations were performed in MATLAB using
the gcmi toolbox (Ince et al., 2017). Responses consis-
tent of evoked responses for Hanning tapered 10- to
20-Hz sinusoids (step size of 1 Hz) at an average phase
of 0 (random added noise of 0.4*pi at a poison distribu-
tion) of a duration of 0.2. 1/f noise was added at an
amplitude of 0.5. Stimuli consisted of an average 4-Hz
repetition of stimuli (stimulus interval were drawn
from a random normal distribution of a mean of 0.25 sec
and a standard deviation of 0.1 sec. The stimulus with only
the onset at 1 were convoluted with a normal distribution
with a 0.2-sec deviation (and 0 mean). Default delay,
variability, and amplitude were set at 0.2 sec, 0.05 sec,
and 1 sec, respectively. As in the low-frequency simulation,
we modulated every fourth stimulus. For the amplitude
modulation, we varied the amplitude to 1.5. For the
latency modulation, we changed the latency to 0.25 sec.
For the variability modulation, we changed the fourth
variability to 0.03 sec. The MI was calculated on the
phase estimations of the Hilbert transformed stimulus
and data time courses (filtered with a third order Butter-
worth filter at 0.5–3 Hz, 3–8 Hz, 8–12 Hz, 12–30 Hz)
across eight different delays (0:0.05:0.35 sec) and aver-
aged across delays (Kaufeld, Bosker, et al., 2020; Keitel
et al., 2018).
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Diversity in Citation Practices

Retrospective analysis of the citations in every article pub-
lished in this journal from 2010 to 2021 reveals a persistent
pattern of gender imbalance: Although the proportions of
authorship teams (categorized by estimated gender iden-
tification of first author/last author) publishing in the Jour-
nal of Cognitive Neuroscience ( JoCN) during this period
were M(an)/M = .407, W(oman)/M = .32, M/W = .115,
and W/W = .159, the comparable proportions for the arti-
cles that these authorship teams cited were M/M = .549,
W/M = .257, M/W = .109, and W/W = .085 (Postle and
Fulvio, JoCN, 34:1, pp. 1–3). Consequently, JoCN encour-
ages all authors to consider gender balance explicitly when
selecting which articles to cite and gives them the oppor-
tunity to report their article’s gender citation balance.
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